SIRT1 Takes a Backseat to AMPK in the Regulation of Insulin Sensitivity by Resveratrol

نویسندگان

  • Morgan D. Fullerton
  • Gregory R. Steinberg
چکیده

Resveratrol is a polyphenol that is enriched in the skins of red grapes. Although scientists speculated for decades about the French paradox in which red wine appeared to protect against heart disease, the mechanisms mediating these effects remained a mystery. In 2003 Sinclair and colleagues (1) identified that resveratrol activated the nicotinamide adenine dinucleotide (NAD )-dependent histone deacetylase, SIRT1, whose yeast homolog (Sir2) was previously shown to enhance longevity in response to calorie restriction (2). Over the past several years studies in rodents have confirmed the powerful antiaging effects of resveratrol, which have been shown to range from improved exercise performance to correction of ageand obesity-induced dyslipidemia, cardiovascular dysfunction, and insulin resistance (3–5). Whereas SIRT1 has a diverse range of substrates, many of its metabolic actions are believed to be mediated by deacetylation and activation of peroxisome proliferator–activated receptor coactivator(PGC1 ), which is a master regulator of mitochondrial biogenesis (4). These studies have suggested that resveratrol and SIRT1 may be the panacea for preventing the development of age-onset diseases. Resveratrol, like other polyphenols, also increases the activity of the AMP-activated protein kinase (AMPK) (3,6,7). AMPK is activated by cellular stress, including fasting and exercise, and is also regulated by circulating hormones and nutrients (8). The activation of AMPK increases fatty acid oxidation, an effect which may involve phosphorylation and inhibition of acetyl-CoA-carboxylase (ACC), reduced levels of malonyl-CoA, and increased mitochondrial fatty acid flux via carnitine palmitoyltransferase-1 (Fig. 1). At the same time, AMPK also phosphorylates and activates PGC1 , resulting in the upregulation of mitochondrial biogenesis (9). The acute activation of AMPK by resveratrol appears to be independent of SIRT1 (10) and is potentially mediated by AMP because resveratrol inhibits the mitochondrial F1 ATPase (11). However, more chronic treatments with resveratrol have suggested that SIRT1 may be upstream of AMPK (12). This idea is supported by the findings that SIRT1 gain of function increases AMPK activity (13), an effect which may be mediated by SIRT1 deacetylation/activation of the upstream AMPK kinase, LKB1 (14). Although it has recently become appreciated that both SIRT1 and AMPK are evolutionary-conserved metabolic stress sensors whose functions are complementary (15), the finding by Um et al. (16) in this issue of Diabetes suggests that these two pathways are even more inextricably linked than previously appreciated. Using AMPK1 and 2–double-null mouse embryonic fibroblasts, Um et al. demonstrate that resveratrol fails to increase PGC1 target genes. These studies were surprising because reseveratrol was first identified as an activator of SIRT1 from cell-free assays in which AMPK was not present (1). Unfortunately, Um et al. did not assess SIRT1 activity directly by measuring in vitro activity or indirectly by examining deacetylation of substrates other than PGC1 . Therefore, their findings leave us with one of two possibilities: 1) that AMPK is required for SIRT1 activation, which based on previous reports seems unlikely; or 2) that SIRT1 deacetylation of PGC1 independent of AMPK phosphorylation is insufficient to regulate PGC1 activity and mitochondrial biogenesis. Future studies will need to examine whether the same is true for other mutual substrates of AMPK and SIRT1, such as forkhead box class O, and potentially other pathways, such as those regulating longevity. Um et al. (16) expand on these exciting in vitro studies by feeding wild-type or AMPK1 and 2–null mice with a high-fat diet plus or minus resveratrol over a 12-week period. They find that the effects of resveratrol on mitochondrial biogenesis, exercise performance, and wholebody insulin sensitivity are completely dependent on the presence of either AMPK isoform (Fig. 1). Improvements in insulin sensitivity with resveratrol are then linked with reductions in intramuscular diacylglycerol and ceramides, suggesting that resveratrol increased fatty acid oxidation in wild-type but not AMPK–null mice (Fig. 1). Consistent with an impaired activation of fatty acid oxidation, Um et al. demonstrate that resveratrol fails to increase the NADto-NADH ratio or reduce PGC1 acetylation in skeletal muscle of AMPK–null mice, findings that are similar to those of Canto et al. (15), who showed that fatty acid oxidation by AICAR was essential for increasing SIRT1 activity. However, given that previous studies have failed to show inhibition of resting or AICAR-stimulated fatty acid oxidation rates in mice with drastically reduced muscle AMPK activity (17), it seems surprising that the effects of resveratrol on fatty acid oxidation, and therefore the production of NAD equivalents, would be completely eliminated in the AMPK–null mice. An interesting finding from these studies is that both AMPK1 and 2–null mice prevented the induction of mitochondrial biogenesis in muscle and white adipose tissue to an equal degree. This was an unexpected finding given the known expression profiles of the AMPKisoforms, where AMPK1 is found in all tissues and is predominate in neurons and adipose tissue, whereas the AMPK2 isoform is found in skeletal muscle and the heart. Therefore, given that there is 10% reduction in From the Department of Medicine, McMaster University, Ontario, Canada. Corresponding author: Gregory R. Steinberg, [email protected]. DOI: 10.2337/db09-1732 © 2010 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by -nc-nd/3.0/ for details. See accompanying original article, p. 554. COMMENTARY

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...

متن کامل

AMP-Activated Protein Kinase–Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol

OBJECTIVE Resveratrol, a natural polyphenolic compound that is found in grapes and red wine, increases metabolic rate, insulin sensitivity, mitochondrial biogenesis, and physical endurance and reduces fat accumulation in mice. Although it is thought that resveratrol targets Sirt1, this is controversial because resveratrol also activates 5' AMP-activated protein kinase (AMPK), which also regulat...

متن کامل

Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1.

The protein deacetylase SIRT1, and its activator resveratrol, exert beneficial effects on glucose metabolism. Different SIRT1 targets have been identified, including PTP1B, AMPK, FOXO, PGC-1α and IRS2. The latter may underscore a tight link between SIRT1 and insulin signaling components. However, whether SIRT1 has a direct effect on insulin resistance and whether resveratrol acts directly or in...

متن کامل

Mediobasal Hypothalamic SIRT1 Is Essential for Resveratrol’s Effects on Insulin Action in Rats

OBJECTIVE Sirtuin 1 (SIRT1) and its activator resveratrol are emerging as major regulators of metabolic processes. We investigate the site of resveratrol action on glucose metabolism and the contribution of SIRT1 to these effects. Because the arcuate nucleus in the mediobasal hypothalamus (MBH) plays a pivotal role in integrating peripheral metabolic responses to nutrients and hormones, we exam...

متن کامل

Resveratrol Prevents Oxidative Stress-Induced Senescence and Proliferative Dysfunction by Activating the AMPK-FOXO3 Cascade in Cultured Primary Human Keratinocytes

The aging process is perceived as resulting from a combination of intrinsic factors such as changes in intracellular signaling and extrinsic factors, most notably environmental stressors. In skin, the relationship between intrinsic changes and keratinocyte function is not clearly understood. Previously, we found that increasing the activity of AMP-activated protein kinase (AMPK) suppressed sene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2010